Robust optimisation algorithm for the measurement matrix in compressed sensing

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Chaotic Measurement Matrix for Compressed Sensing

How to construct a measurement matrix with good performance and easy hardware implementation is the core research problem in compressed sensing. In this paper, we present a simple and efficient measurement matrix named Incoherence Rotated Chaotic (IRC) matrix. We take advantage of the well pseudorandom of chaotic sequence, introduce the concept of the incoherence factor and rotation, and adopt ...

متن کامل

A signal recovery algorithm for sparse matrix based compressed sensing

We have developed an approximate signal recovery algorithm with low computational cost for compressed sensing on the basis of randomly constructed sparse measurement matrices. The law of large numbers and the central limit theorem suggest that the developed algorithm saturates the Donoho-Tanner weak threshold for the perfect recovery when the matrix becomes as dense as the signal size N and the...

متن کامل

Robust Bayesian Compressed sensing

We consider the problem of robust compressed sensing whose objective is to recover a high-dimensional sparse signal from compressed measurements corrupted by outliers. A new sparse Bayesian learning method is developed for robust compressed sensing. The basic idea of the proposed method is to identify and remove the outliers from sparse signal recovery. To automatically identify the outliers, w...

متن کامل

Compressed Sensing with Approximate Message Passing: Measurement Matrix and Algorithm Design

Compressed sensing (CS) is an emerging technique that exploits the properties of a sparse or compressible signal to efficiently and faithfully capture it with a sampling rate far below the Nyquist rate. The primary goal of compressed sensing is to achieve the best signal recovery with the least number of samples. To this end, two research directions have been receiving increasing attention: cus...

متن کامل

Frames for compressed sensing using coherence

We give some new results on sparse signal recovery in the presence of noise, for weighted spaces. Traditionally, were used dictionaries that have the norm equal to 1, but, for random dictionaries this condition is rarely satised. Moreover, we give better estimations then the ones given recently by Cai, Wang and Xu.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: CAAI Transactions on Intelligence Technology

سال: 2018

ISSN: 2468-2322,2468-2322

DOI: 10.1049/trit.2018.1011